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Spectral method study of domain coarsening
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The self-organization of particles in a two phase system in the coexistence region through a diffusive
mechanism is known as Ostwald ripening. The late stage of Ostwald ripening is studied here through the use
of a mesoscopic model in conjunction with a special configuration that allows for the direct measurement of
system characteristics such as domain size. The mesoscopic model is a stochastic partial integrodifferential
equation and is studied through the use of recently developed and benchmarked spectral schemes. The size of
the growing region is not observed to increase as a power law in this model during the late stages of
self-organization in contrast to the power law growth observed in simulations of the earlier stages of self-
organization. The results included here also demonstrate the effect of adjusting the interparticle interaction on

the morphological evolution of the system.
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I. INTRODUCTION

An important phenomenon is the coarsening that is ob-
served in a two phase system in which mass is transported
through diffusion. This phenomenon is commonly referred to
as Ostwald ripening in honor of an early pioneer in this field.
The evolution of this system is driven to minimize the free
energy, resulting in a reduction of the overall interfacial area
of the system. Larger regions of the minority phase grow at
the expense of the smaller regions. The number of regions
decreases in time while the average size of the remaining
regions increases due to the conservative nature of diffu-
sional transport. Eventually, only a single region remains.

Ostwald ripening has been quite difficult to study at least
in part due to its inherently multiscale nature. The observ-
able, macroscale behavior of this system is strongly impacted
by molecular level behavior. One of the earliest successful
theories regarding Ostwald ripening was derived indepen-
dently by Lifshitz and Slyozov [1] and Wagner [2] and is
often referred to as the LSW theory. Assuming spherical par-
ticles which do not interact, in the limit of zero volume frac-
tion of the minority phase, it was asymptotically determined
that the domain size of a typical cluster of particles evolves
according to a temporal power law. The LSW growth law
can be obtained by a simple scaling argument [3], though
more complete derivations appear in [1,2,4-7]. The LSW
growth law is

R~t1/3, (1)

where R denotes the size of a typical cluster and ¢ is time.
While this result is well known to be of great importance
in understanding Ostwald ripening, the shortcomings of the
LSW theory are also widely recognized. One of the greatest
difficulties of the LSW theory is the assumption of no inter-
particle interactions. Intuitively, one would expect that the
coarsening of a domain depends upon the size and proximity
of other clusters; for example, an isolated cluster will behave
quite differently than a cluster surrounded by other large
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clusters. The experimental results in [8] also demonstrate the
importance of particle interactions during Ostwald ripening.
A great deal of modeling has been done in an attempt to
incorporate interparticle interactions in the framework of the
LSW theory. The review articles in [5-7] describe and in-
clude references to this large body of work. This paper will
focus on the recently derived mesoscopic models that explic-
itly include interparticle interactions [9-13].

Computation has traditionally played an important role in
studies of Ostwald ripening. Boundary integral methods have
often been used in studies of the LSW model [14-18]. A
finite volume approach was used for a suitably reformulated
version of the LSW model in [19] and [20]. However, most
computational work related to Ostwald ripening has been
based upon the Cahn-Hilliard field theory model. While there
has been some use of finite element methods for the Cahn-
Hilliard equation [21,22], most computational work has fo-
cused on the use of finite differences. Applying finite differ-
ences to the Cahn-Hilliard equation is rather difficult for a
number of reasons. The appearance of fourth derivatives in
the Cahn-Hilliard equation places rather severe restrictions
on the choice of time step for numerical stability when time
stepping is done using explicit methods. The discretization
used must also respect the conservation of mass in the sys-
tem. In spite of these difficulties, many useful results have
been obtained [23-29].

In contrast to the macroscale models discussed above,
Ostwald ripening can also be studied through microscale
models that consider each individual particle in a system.
The Ising spin exchange model is commonly used to study
Ostwald ripening. The simplest means of computationally
implementing this particle model is to use Kawasaki’s algo-
rithm [30]. In this method adjacent pairs of particles are se-
lected at random as candidates for an exchange; the determi-
nation of whether or not the exchange occurs depends on the
Metropolis probability. Typical results from such simulations
appear in [3] and [31-33]. Such an approach is very compu-
tationally intensive especially when the system has become
fairly well organized so that most adjacent pairs of particles
have the same value thereby eliminating any possible effect
of the exchange of that pair. Thus a great deal of computa-
tional resources are necessary to accomplish simulations for
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a long time with a large number of particles. Accordingly,
many approximations and other speedups to Kawasaki’s al-
gorithm have been proposed [3,31-34]. While a great deal of
improvement in efficiency has been accomplished by these
efforts, long time simulations are still difficult to obtain using
such particle based methods, though recently developed
coarse-grained Monte Carlo methods which are applicable to
a wide class of problems in addition to Ostwald ripening
show a great deal of promise in both accuracy and efficiency
[35,36].

In this paper mesoscopic models are used in a computa-
tional study of Ostwald ripening. These models are similar in
nature to the field theory models but are derived directly
from microscopic models. Earlier simulations of the mesos-
copic model have demonstrated the validity of this as a
model for Ostwald ripening [37,38]. In particular, domain
growth as predicted by the LSW growth law in Eq. (1) at
relatively early times was observed with a transition to an
even faster growth at later times. The goal of this paper is to
study a special configuration that represents the late stages of
domain coarsening. In Sec. II, the mesosopic model that is an
appropriate model for Ostwald ripening is described. Section
IIT discusses the computational technique used in the simu-
lation of the mesoscopic model. In Sec. IV, previously ob-
tained simulation results are described and the reasons why a
special configuration is needed to quantitatively study the
late stages of domain coarsening are given. Also in Sec. IV,
simulation results for the late stages of domain coarsening
are given; the effect of changing the particle interaction
length on the time scale of the late stages of the coarsening
process is also described. Finally, conclusions and areas for
further study are given in Sec. V.

II. DESCRIPTION OF MESOSCOPIC MODEL

Mesoscopic models are local mean field theories that are
designed to bridge the gap between microscopic and macro-
scopic scales by directly incorporating microscopic level be-
havior in the macroscopic level. Since details of the deriva-
tion of this class of mesoscopic models have been given in
[9-13], only a brief qualitative discussion will be given here.
This class of mesoscopic models is derived through a coarse
graining of the underlying microscopic system that does not
require the introduction of artificial truncations. The average
coverage is calculated over a ball with a radius that is small
compared with the interaction radius, thereby averaging the
small random fluctuations while still capturing spatial varia-
tions in the coverage. In passing to the limit of infinite inter-
action radius, an evolution equation of the average coverage
can be derived that includes stochastic terms. Such an ap-
proach has been followed for various micromechanisms
while insuring that the underlying Gibbs measure remains
invariant, i.e., detailed balance is satisfied.

Mesoscopic models deserve study for a number of rea-
sons. Certainly an extremely important feature of these mod-
els is the fact that the noise term in the equation arises as a
result of a derivation rather than being introduced in an ad
hoc fashion. Also, the fact that the mesoscopic model is a
continuum model should allow for more efficient computer

PHYSICAL REVIEW E 75, 046703 (2007)

simulations as compared with the underlying particle model.
In addition, the coupling of continuum models with other
continuum models is much more straightforward than cou-
pling of continuum models with particle models.

The mesoscopic model that is an appropriate model of
Ostwald ripening is derived from the spin exchange (surface
diffusion) mechanism and is given by the following stochas-
tic partial integrodifferential equation:

u,—~DV - [Vu—Bu(l-u)VJ,*u]
+ ydiv[V2Du(1 — u)dW(x,1)] =0, (2)

where u is the concentration of the minority phase, D is the
diffusion constant, B is proportional to the inverse of the
temperature of the underlying Ising model, J,, is the migra-
tion potential denotes convolution, 7y is proportional to the
interaction length of the particles, and dW represents a (white
noise) process that is delta correlated in both space and time
with

(dW(x,1))=0
and
dW(x,t)dW(x',t')y=6x—x")o(t—-1"),

where the angular brackets are used to denote mean values. It
is important to observe that the noise in Eq. (2) is multipli-
cative rather than the additive noise that is commonly added
to deterministic models in an ad hoc manner. It is also note-
worthy that the Cahn-Hilliard equation can be obtained from
the deterministic version of Eq. (2) by a suitable rescaling
and Taylor expansion and thus is a special case of this equa-
tion [13].

The model in Eq. (2) has many attributes that make it
attractive for studying Ostwald ripening. There is theoretical
and computational evidence of the validity of the mesoscopic
model in Eq. (2). A large deviation principle argument has
been given which shows that the probability that Eq. (2)
differs from the underlying particle system decays exponen-
tially [39,40]. Prior computational simulations of Eq. (2)
have also exhibited power law growth similar to Eq. (1) at
early stages of the self-organization [37]. Another useful fea-
ture of Eq. (2) is the explicit appearance of the interaction
potential which transparently allows for the consideration of
a wide variety of interparticle interactions.

A computational study of the mesoscopic model in Eq. (2)
in a special situation which is similar to the late stages of
self-organization is described in this paper. Numerical tech-
niques for stochastic partial differential equations such as Eq.
(2) have received limited attention in the literature as com-
pared with deterministic equations. Some examples of tech-
niques using finite differences appear in [41-45]. Stochastic
finite elements are discussed in [46] and applied to stochastic
partial differential equations driven by white noise in
[47-50]. While these numerical methods could be used to
simulate Eq. (2), the focus here is on spectral methods.
While spectral methods have been used previously for sto-
chastic partial differential equations with additive noise [51],
their application for equations with multiplicative noise is
novel [52]. There are a number of reasons why a spectral
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method seems to be a particularly attractive computational
approach for Eq. (2). The calculation of convolutions is
straightforward and efficient in a spectral method. In [13] it
was demonstrated for a deterministic mesoscopic model that
spectral methods were much more accurate than finite differ-
ence methods for a comparable computational effort. When
time stepping is done in Fourier space, spectral methods also
allow for terms which become linear in Fourier space, such
as diffusive terms, to be treated exactly using an integrating
factor, thereby both increasing accuracy and directly reduc-
ing computational time. The integrating factor also eases sta-
bility restrictions on admissible time steps thus allowing the
use of larger times steps than are numerically stable if the
linear terms were not calculated exactly when one is using an
explicit time stepping scheme [53].

III. DESCRIPTION OF SIMULATION METHOD

The numerical scheme that is used to study the mesos-
copic model in Eq. (2) is based upon a generalization of
spectral schemes for deterministic partial differential equa-
tions to the stochastic setting. For the sake of simplicity in
the description of the numerical method here, it is assumed
that the stochastic partial differential equation in Eq. (2) has
only one spatial dimension. This method straightforwardly
generalizes to higher spatial dimension as evidenced by the
two spatial dimension results presented later in this paper.

Spectral schemes for deterministic evolution equations
form the starting point for the development of spectral tech-
niques for the simulation of solutions to Eq. (2). The solution
of the equation is expanded in a Fourier series in the spatial
component

u(x,t) = X 4(& 1™, (3)
3

Derivatives are treated in Fourier space where they are mul-
tipliers and a fast Fourier transform (FFT) is used to pass
between physical space and Fourier space as needed. The
resulting system of ordinary differential equations for the
Fourier coefficients is solved using a finite difference time
stepper; typically this system of ordinary differential equa-
tions is solved in Fourier space to enable the treatment of
terms which are linear in Fourier space exactly through the
use of an integrating factor.

A detailed description of the generalization of this ap-
proach to stochastic partial differential equations such as Eq.
(2) is given in [52]. Here, the discussion will focus on those
aspects of the scheme that are unique to the stochastic system
while only considering the simplest possible version of the
spectral methods. In particular, the spectral treatment of the
multiplicative noise term in Eq. (2) and the use of a suitable
time discretization technique will be discussed briefly here.

A. Treatment of noise term

A crucial step in the development of a spectral scheme for
a stochastic partial differential equation such as Eq. (2) is to
obtain a spectral representation for the spatial component of
the noise term. It is well known [54] that a stationary, iso-
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tropic, Gaussian random field v(x) can be represented by the
following stochastic integral in Fourier space:

v(x)= f TS 2(HaW (&), (4)

where W is Brownian motion and § is the spectral density
function of the random field v. Consistent numerical
schemes for the simulation of random fields are based upon
discretizations of this stochastic integral [55-61]. The sim-
plest such discretization uses equispaced nodes and is known
as the Fourier method since this discretization results in what
is essentially a Fourier series. This approximation can be
written as

M
v(x) = X a; cos(2méx) + b, sin2méw), (5)

j=1
where a; and b; are independent Gaussians with mean zero
and variance S(&,)A¢€. Due to the periodicity of the approxi-
mation in Eq. (5), the Fourier method is not suitable in ap-
plications in which the desired random field has long range
correlations [55-58]. However, since the random field that is
needed for the numerical study of Eq. (2) lacks long range
correlations, the Fourier method should be suitable. The Fou-
rier method is also computationally attractive since an FFT
can be used directly to evaluate Eq. (5) at all physical space
lattice sites.

The approximation in Eq. (5) is used to represent the spa-
tial component of the noise. Since each realization of the
noise at a given time is essentially a Fourier series, the noise
term in Eq. (2) can be calculated by completing all multipli-
cations in physical space and all differentiations in Fourier
space, using the FFT to pass back and forth between physical
space and Fourier space as necessary. In other words, the
existence of the Fourier series representation of the noise in
Eq. (5) allows for the treatment of the stochastic term in the
same fashion as in deterministic spectral methods.

B. Time discretization

Using the above approach for the spatial components, the
solution of the stochastic partial differential equation in Eq.
(2) effectively has been reduced to the solution of a system
of stochastic ordinary differential equations where the un-
knowns are the Fourier coefficients in Eq. (3). Any one of
these stochastic ordinary differential equations can be written
in Ito form as

du = a(u)dt+ b(u)dW(z), (6)

where a is the drift coefficient and b is the diffusion coeffi-
cient to use the standard terminology from the stochastic
ordinary differential equations literature [62]. Since numeri-
cal schemes that were derived for deterministic ordinary dif-
ferential equations do not include the stochastic corrections
from the Ito calculus, it is inadvisable to use them directly in
the stochastic setting. For example, the deterministic Euler
method applied to a stochastic ordinary differential equation
has a strong (pathwise) order of convergence of % rather than
order 1 as in the deterministic setting [62]. Thus it is essen-
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tial to use schemes that are derived directly from suitable
truncations of Taylor-Ito series rather than deterministic Tay-
lor series. However, such schemes typically include deriva-
tives of the drift and the diffusion coefficients. Given the
nonlinearity of these terms in Eq. (2) and the fact that time
steps are being taken in spatial Fourier space, it is useful to
use derivative-free Runge-Kutta type schemes [62-64]. One
choice of a first order strong scheme for Eq. (6) is the fol-
lowing:

1
Upyr = Uy, +alu,) At + b(u,) AW, + —=[b(i1,,) — b(u,
+1 (u,) () 2\/5[( ) = b(u,)]

X[(AW,)* - Ad] ™)
with supporting value i1, given by
ity =1, + b(u,)VAr, ®)

where AW, is a Gaussian with mean 0 and variance At. Since
the solution of Eq. (2) is real, it is required that the Fourier
coefficients in Eq. (3) respect the symmetries that are present
in spectral representations of real fields, i.e., 4(&,1)
=ii(—¢&,1) where the overline denotes complex conjugate.
Since the time steps are being completed in Fourier space, it
is essential that the AW,’s used maintain this symmetry.

C. Computational verification of method

Computational evidence of the validity of the simulation
method described above is given in [52]. In that work, sto-
chastic partial differential equations for which one can ana-
lytically obtain the equilibrium covariance are considered as
computational benchmark problems. These benchmark prob-
lems included equations with additive noise and multiplica-
tive noise; in fact, one of these equations has a noise term of
the same form as the noise term in Eq. (2). In [52], good
agreement was exhibited between simulation results and ana-
lytic results for a wide variety of choices of spectral density
function S that would be appropriate approximations for
white noise, including the most straightforward choice of
S(€)=1. Thus this choice was used to obtain all of the simu-
lation results presented in this paper. While all the results in
[52] were shown for 5000 realizations in order to insure neg-
ligible sampling error, results having errors typically less
than 3% were obtained when only 500-1000 realizations
were used.

IV. SIMULATION RESULTS

Some simulation results for the mesoscopic model in Eq.
(2) using the spectral method discussed above in Sec. III are
now given. To begin, we demonstrate the qualitative behav-
ior that is observed in this system and then briefly describe
some of the quantitative results that appeared in [37] in order
to motivate the use of the special configuration which is the
main topic of this section. Figure 1 contains contour plots of
a single realization of simulation results for Eq. (2) at times
3,5, 7, and 9. Lighter shades correspond to higher concen-
trations while darker shades correspond to lower concentra-
tions. The migration potential in Eq. (2) was chosen to be
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FIG. 1. Contour plots demonstrating the time evolution of the
concentration field obtained from mesoscopic simulations of Eq. (2)
for the choice of interaction parameter r,=0.05 at times (a) r=3, (b)
t=5, (¢) t=7, and (d) t=9. The lighter shades represent regions of
higher concentration while the darker shades represent regions of
lower concentration. The expected self-organization into regions of
high concentration is observed.
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with ry=0.05 being the parameter that describes the interac-
tion length. The other parameters in Eq. (2) are chosen to be
D=0.1, B=6, and y= r(z). Simulation parameters include 64
wave numbers in each direction and a step size of Ar
=0.000 01; this time step insures numerical stability of the
time stepping scheme in Eqgs. (7) and (8). The domain of the
computation is a unit square with periodic boundary condi-
tions. The system is initialized so that (u(x,0))=0.25 with
small amplitude perturbations about this mean. At the earliest
time shown in Fig. 1, the formation of several small regions
of high and low concentration is observed. At later times, the
number of regions of high concentration decreased while the
size of the remaining regions increased. Eventually only one
circular region of high concentration remained at later times
than those depicted in Fig. 1. These results are in good agree-
ment with physical intuition and experimental observations
in such situations: In order to minimize free energy, the sys-
tem evolves by minimizing the curvature of the regions of
high concentration resulting in fewer of these regions of
larger average size.

In [37], this self-organization was quantified by comput-
ing the typical domain size and making comparisons with the
LSW theory. The computation of the typical domain size was
completed using the standard approach [23,25,65] based
upon the radially averaged covariance and spectral density
function of the concentration field. Since the covariance and
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spectral density function are a Fourier transform pair, the
typical length of the concentration field corresponds to the
maximum value of the spectral density function. However,
this maximum is difficult to calculate numerically; the mean
of the spectral density function is used as the measure of the
typical length scale of the system.

As reported in [37], the typical domain size exhibited
growth comparable with the LSW law in Eq. (1) at earlier
times in simulation of Eq. (2), while growth with a larger
exponent was observed at later times. However, the lack of
radial symmetries in the concentration field depicted in Fig.
1 indicate the difficulty in using this approach to measure
typical domain size beyond time 3 in this case. Also when
the system consists of a low concentration background with
circular regions of high concentration, the regions of low
concentration will make significant contributions to the co-
variance of the concentration field thereby diminishing the
effectiveness of this quantity as a measure of the size of the
high concentration regions. Calculating the mean value of
the spectral density function in each direction without radial
averaging is also problematic in that unidirectional covari-
ances can greatly underestimate or overestimate correlation
lengths, especially when the underlying field has a striped
structure. Thus difficulties in the measurement of the typical
size of the high concentration regions prevented longer time
quantitative studies of Ostwald ripening; the limitation was
not caused by the simulation algorithm or the complexity of
the model.

In order to study the long time behavior of this system,
the time evolution of the concentration field when starting
from a special configuration which serves as a caricature for
the late stages of self-organization is considered here. The
study of self-organization from special initializations of the
concentration field has been used before with a variety of
models and computational techniques by many authors
[15,17,66,67]. Here, an initial concentration field consisting
of two circular regions is used since configurations of this
nature are observed in the late stages of self-organization.
[Observe the system at time 9 in Fig. 1(d) has essentially
reduced to such a configuration.] For the simulation results
described in the remainder of this section, these two circular
regions of high concentration are placed in a unit square with
centers separated by a distance of 0.5 along the vertical axis.
Periodic boundary conditions are used. The regions of high
concentration are connected to the surrounding regions of
low concentration using rapidly decaying exponentials. The
upper circle is initialized to have a radius of 0.1 while the
lower circle has the slightly smaller initial radius of 0.09. At
early times, the system relaxes to circular regions with
greater extent than initially with a less steep connection be-
tween regions of low concentration and high concentration.
These start up effects are not depicted on the plots given in
this section.

Figure 2 contains contour plots of a typical single realiza-
tion of concentration field obtained via simulation of Eq. (2)
using the spectral scheme described in Sec. III for the case
ro=0.06 for times 0.01, 5, 6, 7, 9, 10. These times were
selected to be representative of the behavior observed in the
system. The light areas represent regions of high concentra-
tion while the dark areas represent regions of low concentra-
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FIG. 2. Contour plots demonstrating the time evolution of the
concentration field for the special initial configuration for the inter-
action parameter r(=0.06 at times (a) t=0.01, (b) =5, (c) t=6, (d)
t=7, (e) t=9, and (f) t=10. At intermediate times, the regions be-
come elliptical in shape. The lower region eventually disappears as
expected.

tion. The contours are centered about a concentration of 0.5
with contours spaced 0.15 apart. Other parameters are chosen
as in Fig. 1: 64 wave numbers in each direction, D=0.1, 8
=0, y= ré, and Ar=0.000 01. As expected based upon physi-
cal intuition, the smaller lower region of high concentration
eventually disappears leaving a single region of higher con-
centration. During this evolution, the smaller region appears
to remain very nearly circular while the larger, growing re-
gion appears to be elliptical until eventually returning to a
circular shape.

Quantifying the behavior observed in Fig. 2 is useful in
understanding this phenomenon. In this special geometry,
this size of each region can be directly measured; the bound-
ary of the region is selected to be the location where the
concentration field takes the value of 0.5. Linear interpola-
tion is used to calculate the boundary points that are located
between grid points. Figure 3 depicts the time evolution of
the horizontal and vertical diameters of the regions of high
concentration after averaging over 750 realizations. The
darker lines correspond to the larger, upper region and the
lighter lines correspond to the smaller, lower region. The
lower region deviates slightly from circular whereas the up-
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4 6 8 10 12 14

FIG. 3. Plots of the time evolution of the major and minor axes
of the two elliptical regions of high concentration. The darker lines
correspond to the upper, larger region of high concentration while
the lighter lines correspond to the lower, smaller region of high
concentration. The greater deformation from circular in the upper
region can clearly be seen in this plot.

per region becomes quite elliptic near the time when the
lower region disappears and eventually becomes circular
again. These results are as expected given the behavior ob-
served in Fig. 2 for a single realization.

Figure 4 depicts the time evolution of the area of each of
the regions of high concentration for the same parameter
values as Fig. 3. The upper curve corresponds to the upper,
larger region while the lower curve corresponds to the lower,
smaller region. This figure also demonstrates the very rapid
change in the larger region of high concentration immedi-
ately following the disappearance of the lower region.

Figure 5 shows the effective radius of the regions of high
concentration as a function of time. The effective radius is
calculated to be the radius of the circle which has the same
area as each of the (elliptic) regions of high concentration.
The effective radius showed the same qualitative behavior as
observed for the area and the major and minor axes of the
elliptic regions. However, the effective radius is an important
quantity to consider because it is most like the typical do-
main size of the LSW theory for self-organization. The ef-
fective radius of the larger region does not demonstrate
power law growth, even at the earlier times depicted in Fig.
5. Compared with the ¢'/3 of the LSW theory, the growth
observed in the effective radius of the larger region is much

Area
0.16

0.14
0.12

0.1
0.08
0.06

0.04
0.02
4 6

FIG. 4. Plots of the time evolution of the area of the upper and
lower regions of high concentration. The upper line corresponds to
the upper, larger region while the lower line corresponds to the
lower, smaller region. The very rapid growth of the upper region as
the lower region disappears is quite evident in this plot.
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FIG. 5. Plots of the time evolution of the effective radius of the
upper and lower regions of high concentration. The upper line cor-
responds to the upper, larger region while the lower line corre-
sponds to the lower, smaller region. The effective radius is most like
the typical length scale of the LSW (Lifshitz, Slyozov, Wagner)
growth law; however, power law behavior is not observed.

slower. The slow, non-power-law growth was also observed
in the direct average of the effective radii of both regions as
well as the average weighted by the respective areas of each
region. Slower growth is what would be expected to eventu-
ally occur as the final state is reached since growth can no
longer occur once the system has organized into a single
circular region. These results would imply that when a self-
organizing system has reached the two circle regime it is
already beyond any regime in which a scaling law such as
the LSW growth law could hold.

It is also interesting to observe the effect of changing the
interaction length ry in Eq. (9) on the late stages of self-
organization. Intuitively, one would expect that the evolution
of the system would be faster in the presence of longer range
interactions since greater interaction lengths facilitate the lo-
cation of like particles or phases. Figure 6 contains the major
and minor axes of the upper and lower regions of high con-
centration for the choice of ry=0.05. Comparing with Fig. 3
for r,=0.06, a much slower evolution is observed, with the
lower region not disappearing until just before =15 rather
than #=8 in Fig. 3, as is intuitively expected. All of the other
qualitative features of coarsening already discussed for the

o /

4 6 8 10 12 14

FIG. 6. Plots of the time evolution of the major and minor axes
of the two elliptical regions of high concentration for the choice
r9=0.05. The darker lines correspond to the upper, larger region of
high concentration while the lighter lines correspond to the lower,
smaller region of high concentration. When compared with Fig. 3
(rp=0.06), slower evolution is observed, as would be expected in
situations with smaller interaction lengths.

046703-6



SPECTRAL METHOD STUDY OF DOMAIN COARSENING

ro=0.06 earlier are also observed in this case. Thus the plots
analogous to Figs. 4 and 5 are not included here for the sake
of brevity.

Many other configurations similar to those discussed
above were also considered. When the relative difference in
the size of the initial circular regions was greater, the smaller
circular region disappeared more rapidly; however, the larger
region still exhibited slower growth than predicted by the
LSW theory and also did not grow like a power law. Like-
wise, initializing the system with two circular regions of
more comparable size resulted in a much slower disappear-
ance of the smaller circular region. For the sake of brevity,
these results are not shown given the qualitative and quanti-
tative similarity to the results already included.

V. SUMMARY

This paper has demonstrated the value of the mesoscopic
modeling approach used in conjunction with a spectral simu-
lation scheme for stochastic partial differential equations to
study self-organization. Prior analytic work [39,40] and com-
putational work [37] have indicated the validity of the me-
soscopic model. In the mesoscopic simulation study in [37],
a regime of growth in a self-organizing system from a ran-
dom initial configuration was observed to behave according
to the LSW theory. In order to study the late stages of self-
organization, a system with a simple geometry consisting of
two circular regions of high concentration in a low concen-
tration background was studied using mesoscopic simulation.
This special geometry is similar to that observed in the late
stages of coarsening from a random initial configuration.
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Such a special initial configuration allows for the direct mea-
surement of domain sizes, which is important due to symme-
try assumptions in the commonly used measures of typical
domain size in self-organizing systems. In these simulations,
power law growth in the domain size was not observed be-
fore, during, or after the rapid change in domain size that
occurred when the smaller region diffused away, thereby in-
dicating such configurations are beyond any regions in which
scaling laws for growth hold. Longer interaction lengths re-
sulted in faster self-organization in these simulations; this
behavior is reasonable as longer interaction lengths would be
expected to facilitate the location of like particles.

Further studies of the long time behavior of the self-
organizing system are warranted. The effect of the boundary
conditions is obviously very worthy of study and will require
the development of alternative versions of the spectral
scheme that was briefly described here. Given the ease in
which different sorts of particle interactions can be used in
mesoscopic models, there are many additional classes of in-
teraction potentials which should be considered. Anisotropic
potentials would be useful in coarsening systems in which
there is a preferred direction for growth. Potentials with re-
pulsive interaction ranges would naturally arise in systems
with charged particles.
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